Modelling the fire propagation and fire impacts on buildings in the Wildland-Urban Interfaces

Anne GANTEAUME
INTRODUCTION

Context

- Increasing Wildland-Urban Interfaces (WUI) in SE France
INTRODUCTION

Context

- Increasing Wildland-Urban Interfaces (WUI) in SE France => Increasing fire occurrence
INTRODUCTION

Context

- Increasing WUI in SE France => Increasing fire occurrence

Role of the **ornamental vegetation** as important **vector of fire propagation** towards housing
INTRODUCTION

Context

- Increasing WUI in SE France => Increasing fire occurrence

Role of the **ornamental vegetation** as important **vector of fire propagation** towards housing

Possible **significant damage** to structures
INTRODUCTION

Context

Ornamental vegetation => Possible **significant damage** to structures

Due to massive firebrand shower … …or to heat radiating from the flame front
INTRODUCTION

Context

Ornamental vegetation => Possible significant damage to structures
INTRODUCTION

Context

Ornamental vegetation => Possible significant damage to structures
INTRODUCTION

Context

Need to better understand the fire behavior in WUI vegetation
INTRODUCTION

Context

Modelling the Fire Behavior : What’s the status?
INTRODUCTION

Context

Modelling the Fire Behavior: What’s the status?

Semi-physical network model
INTRODUCTION

Context

Modelling the Fire Behavior: What’s the status?

Very efficient modelling in **Wildland vegetation**

Common outputs: Fire rate of spread, fireline intensity, flame height, fire perimeter
INTRODUCTION

Context

Modelling the Fire Behavior: What’s the status?

Very efficient modelling in *Wildland vegetation*

Some attempts at the WUI

WFDS simulation code
INTRODUCTION

What do we need now?

Modelling the Fire Behavior in WUI vegetation

Adapting models because more heterogeneous vegetation in WUI than in wildland
INTRODUCTION

What do we need now?

Modelling the Fire Behavior in WUI vegetation => impacts on structures

Figure 38 Image showing structure to structure fire spread on primary structures ignited by 18:38.

Photo courtesy of CSFD, used with permission, overlays from NIST
Modelling the Fire Behavior in WUI vegetation: How?

Generating vegetation scenes (2D & 3D)

Georeferenced plants => spatial distribution of vegetation
Species, crown diameter, crown height, total height
METHODOLOGIE

Modelling the Fire Behavior in WUI vegetation: How?

Getting data on the structure of ornamental species

Litter bulk density, litter load, leaf bulk density, leaf SVR, FMC
% dead fuel, % live fuel
METHODOLOGIE

Modelling the Fire Behavior in WUI vegetation : How?

Getting data on the flammability of ornamental species

Flammability experiments:
- Time-to-ignition
- Flaming duration
- Ignition temperature
- Flame height,
- Flame temperature, etc.

Journées CAQSIS 2019
Selecting the model

- **FireWUI**

Based on the fire spread model SWIFFT (De Gennaro 2017)

- Enhanced combustion scheme
- Coupled with a module of fire-induced thermal degradation of structures
- Adding a simplified firebrand modelling
SOME RESULTS

Modelling the Fire Behavior in WUI vegetation

SCENARIO 1:
Vitesse- direction de vent fictives (10m/s - Vent origine Sud-Ouest) // Terrain plat // Jardin sous vent dominant // Pelouse sèche non tondue

Jardin brûlé en 252s d’après la simulation.
SOME RESULTS

Modelling the Fire Behavior in WUI vegetation

SCENARIO 2:
Vitesse/direction de vent fictives (10m/s - Vent origine Nord-Ouest-)
// Terrain plat // Jardin attaqué par le flanc du feu // Pelouse sèche non tondue

Jardin brûlé en 238s d’après la simulation.
SOME RESULTS

Modelling the Fire Behavior in WUI vegetation => impacts on structures
SOME RESULTS

Modelling the Fire Behavior in WUI vegetation => impacts on structures

% façade dégradée par le flux thermique

0%
0,1% - 10%
10% - 20%
20% - 50%
50% - 100%
SOME RESULTS

Modelling the Fire Behavior in WUI vegetation => impacts on structures

% façade dégradée par le flux thermique

- 0%
- 0.1% - 10%
- 10% - 20%
- 20% - 50%
- 50% - 100%

Journées CAQSIS 20
SOME RESULTS

Modelling the Fire Behavior in WUI vegetation => impacts on structures
SOME RESULTS

Modelling the Fire Behavior in WUI vegetation => impacts on structures

% façade dégradée par le flux thermique

- 0%
- 0.1% - 10%
- 10% - 20%
- 20% - 50%
- 50% - 100%
SOME RESULTS

Modelling the Fire Behavior in WUI vegetation => impacts on structures

% façade dégradée par le flux thermique
- 0%
- 0.1% - 10%
- 10% - 20%
- 20% - 50%
- 50% - 100%
SOME RESULTS

Modelling the Fire Behavior in WUI vegetation => impacts on structures

Vegetation managed around housing

Scenario with unmanaged vegetation around housing

% façade dégradée par le flux thermique

0%
0,1% - 10%
10% - 20%
20% - 50%
50% - 100%
FUTURE WORKS

Modelling the Fire Behavior in WUI vegetation => impacts on structures

- Using WFDS
 => testing different scenarios of vegetation distribution around the house
FUTURE WORKS

Modelling the Fire Behavior in WUI vegetation => impacts on structures

➢ Using WFDS

=> testing different scenarios of vegetation distribution around the house

Wind direction => most likely fire direction

Firewise scenario: Thinning
FUTURE WORKS

Modelling the Fire Behavior in WUI vegetation => impacts on structures

- Using WFDS
 => testing different scenarios of vegetation distribution around the house

Wind direction => most likely fire direction

Unfirewise scenario:
Big tree overhanging the roof

Journées CAQSIS 2019